CALDON® ULTRASONICS

LEFM Link – 2G
Программное обеспечение ПК-интерфейса

Руководство пользователя
Программное обеспечение Caldon LEFMLink 2G представляет собой второе поколение диагностического программного обеспечения, предназначенного для использования в качестве инструмента диагностики расходомеров серии LEFM2xxCi (220Ci, 240Ci и 280Ci, а также расходомеров 280Fi и 2010) и детекторов поверхности раздела трубопроводов семейства SoundTrack (детекторы SoundTrack, SoundTrax и Void).

Рекомендуется, чтобы перед выполнением процедур проверки и ремонта системы персонал прошел общее обучение в компании Cameron. Сведения о программах профессиональной подготовки можно получить в компании Cameron.

Компания Cameron является производителем высококачественных контрольно-измерительных приборов, который выполняет прямые продажи с завода в Питтсбург для клиентов в США и за рубежом через агентов и представителей. Компания предлагает полный спектр услуг по поддержке. Для получения дополнительной информации или поддержки в применении, эксплуатации или обслуживании приборов семейства LEFM 2xx или SoundTrack напишите нам, позвоните или зайдите на сайт www.c-a-m.com/flo.
Оглавление

Раздел 1 .. 1
Библиография.. 3
Требования системы... 1
Раздел 2 .. 3
Установка и настройка оборудования... 3
Установка программного обеспечения... 3
Аппаратная конфигурация... 6
Раздел 3 .. 9
Обзор пользовательского интерфейса.. 9
Архитектура программного обеспечения... 9
Обзор основного экрана .. 12
Раздел 4 .. 16
Конфигурации загрузки и выгрузки .. 16
Скачать файлы загрузки .. 16
Выгрузить файл настроек из устройства ... 19
Раздел 5 ... 22
Руководства пользователя .. 22
Раздел 6 ... 24
Выполнение задачи .. 24
Регистрация данных... 24
Обновление масштабирования ... 27
Установка времени датчика .. 29
Сброс счетчиков датчика ... 30
Повторная инициализация профиля скорости .. 31
Запуск пути .. 32
Раздел 7 .. 36
Пункты меню .. 36
Диагностика сигнала .. 36
Диагностика расчета .. 38
Преобразователи .. 39
Путь отраженного сигнала ... 40
Тенденции .. 41
Проверка состояния .. 42
Раздел 8 .. 43
Раздел 9 .. 48
Инструменты .. 48
Просмотр регистров Modbus .. 48
Форсирование выхода .. 49
Обнуление измерителя ... 50
Связь .. 51
Введение

LEFMLink 2G является вторым поколением программного обеспечения, используемого в качестве компьютерного диагностического инструмента для расходомеров серии LEFM 2xxCi и детекторов поверхности раздела трубопроводов семейства SoundTrack. В данном руководстве рассмотрено использование программного обеспечения для диагностики проблем, обновления масштабирования входных и выходных сигналов и настройки этих устройств.

Данное руководство предполагает, что пользователь понимает методы устранения неполадок, рассмотренные в руководствах IOM, и/или прошел обучение персонала, проводимое компанией Cameron по использованию этих методов. Кроме того, данное руководство предполагает, что пользователь знаком с порядком работы на компьютерах в операционной системе Windows.

Требования системы

ПК (предпочтительно ноутбук), на котором установлена операционная система Windows XP или более поздняя версия операционной системы и который оснащен как минимум одним свободным последовательным портом связи (COM).
Раздел 2

Установка и настройка оборудования

Установка программного обеспечения

ПО LEFMLink 2G упаковано в виде установочной программы. Программа установки LEFMLink 2G Setup.exe может быть запущена непосредственно с компакт-диска 101A729. Запустите исполняемый файл двойным щелчком по значку.

Откроется следующий экран, позволяющий начать процесс установки; нажмите кнопку «Далее» для того, чтобы установить LEFMLink 2G на компьютере.

Рис. 2-1. Установка программы
Введите информацию о пользователе и нажмите кнопку «Далее» для продолжения.

Рис. 2-2. Введите информацию о пользователе
Каталог по умолчанию C:\Program Files\Cameron\ModWorXPro. Нажмите кнопку «Установить» для установки LEFMLink 2G в указанном месте.

![Image](Image.jpg)

Рис. 2-3. Готовность к установке

Нажмите «Готово» для выхода из программы установки и запуска LEFMLink 2G (см. Раздел 3).

![Image](Image.jpg)

Рис. 2-4. Установка завершена
Аппаратная конфигурация
Подключите последовательный интерфейсный кабель между свободным COM-портом ПК и выводами 1–5 клемм TB-2 (или выводами 6–10 для клеммы TB-2) на датчике.

Рис. 2-7. Аппаратное подключение к прибору, предназначеному для работы во взрывоопасных зонах
Запустите LEFMLink 2G в соответствии с указаниями раздела 3.

По умолчанию, LEFMLink 2G передает данные через порт COM1 на адрес ведомого устройства Modbus 1 со скоростью 9600 бод. Если это соответствует конфигурации оборудования Cameron, то LEFMLink 2G будет отображать данные, аналогичные показанным на Рис. 2-9, в этом случае ПО LEFMLink 2G готово для дальнейшего использования. Если экран LEFMLink 2G показывает сбой связи, как на Рис. 2-10, нужно выполнить дальнейшие действия для подключения. Такая ситуация может быть вызвана одной или несколькими из следующих перечисленных причин:

- Оборудование Cameron имеет различные параметры связи; инструкции по изменению параметров связи в соответствии с конфигурацией устройств см. в Разделе 3.
- COM1 используется другой программой. Это может произойти, например, в том случае, если включены такие программы, как HotSync или ActiveSync для КПК. Закройте конфликтующую программу, чтобы установить соединение, или выберите другой порт, если есть.
- Кабель поврежден.

1 Примечание: Значение по умолчанию на данном компьютере будет равно последнему значению, использованному программным обеспечением в последнем рабочем цикле. Программное обеспечение запоминает используемые настройки связи.
Рис. 2-9. Передача данных между LEFMLink 2G и датчиком

Рис. 2-10. Отсутствие связи между LEFMLink 2G и датчиком
Раздел 3

Обзор пользовательского интерфейса

Пользовательский интерфейс аналогичен для всех измерительных приборов Cameron с некоторыми специфическими отличиями для каждого продукта. Сначала будут описаны общие черты, затем специфические, если применим.

Архитектура программного обеспечения

После прохождения через краткий экран-заставку (где представлен анимированный запуск LEFMLink 2G), программное обеспечение переходит к экрану подключения (рис. 3-1). Основной экран (рис. 3-4) является опорной точкой для всей архитектуры. На этом экране можно запустить руководства пользователя (файлы в формате PDF), выполнить различные задачи и собрать данные.

Рис. 3-1. LEFMLink 2G, начальный экран соединения

На экране подключения просто нажмите кнопку Connect («Подключить»). Программное обеспечение открывает экран связи, чтобы пользователь мог выбрать соответствующие коммуникации (рис. 3-2 и 3-3).
На некоторых небольших экранах, т.е. нетбуках, кнопка Connect Now (подключить сейчас) может быть не видна, нажмите Alt + C, чтобы активировать ее.
Основной экран LEFMLink 2G содержит обзор состояния счетчика и измерений. На рис. 3-4 показано главное окно и выделены основные области этого экрана.

Рис. 3-4. LEFMLink 2G для измерителей серии LEFM

В следующих подразделах представлены вводные пояснения по работе основного экрана.
Обзор основного экрана

Панель задач
Панель задач используется для доступа к другим функциям ПО LEFMLink 2G. Панель задач доступна только на главном экране. Ниже представлена краткая информация по основным функциям задач. Каждый элемент задачи будет подробно рассмотрен в следующем разделе.

Команды файла
- Выход из программы

Задачи (см. Раздел 6)
- Регистрация данных — запись данных запуска и остановки; выберите путь к каталогу и название журнала
- Масштабирование аналогового ввода/вывода — Изменение аналогового ввода, аналогового выхода и масштабирование импульсного выхода, а также параметры связи с датчиком
- Масштабирование RTD аналогового входа
- Установить время датчика
- Сбросить счетчики датчика
- Повторно инициализировать профиль скорости
- Запуск пути

Инструменты (см. Раздел 8)
- Просмотреть регистры Modbus (инструмент для просмотра и записи в любой регистр Modbus)
- Output forcing (форсирование выхода) — значения усилия для аналогового и частотного выхода в целях калибровки контура.
- Нулевое положение измерителя (необходимо использовать специальные процедуры на сайте)
- Коммуникации (изменение скорости передачи измерителя и идентификатора ведомого устройства)

Если определенная задача не может быть выполнена в имеющихся условиях, она будет недоступна (например, устройство не имеет RTD) и закрашена серым. Элементы задач, как правило, будут активными при отображении на главном экране, при работе на одном из нижних экранов они будут показаны серым цветом.

Перезагрузка регистров временного хранения данных
LEFMLink 2G отображает свои единицы измерения в соответствии с единицами датчика. Однако единицы измерения считаются только в момент первого
включения LEFMLink 2G. Если пользователь изменил единицы, то нажатие этой кнопки позволит LEFMLink 2G перечитать регистры и обновить их содержимое.

Значки загрузки и выгрузки
LEFMLink 2G имеет специальные значки для отправки файлов конфигурации в датчик (загрузка — значок красной стрелки «вниз») и для считывания файлов конфигурации из датчика (загрузка — зеленый значок стрелки «вверх»).
В руководстве предусмотрен специальный раздел с инструкциями по выполнению этих задач.

Время устройства
Датчик оснащен собственными часами реального времени. Время и дата этих часов отображаются на главном экране. При необходимости это время устройства может быть изменено на время ПК.

Доступ к руководствам пользователя (см. Раздел 5)
Эти вкладки используются для доступа к руководствам пользователя, связанным с продуктом.

Меню (см. Раздел 7)
Меню используется для доступа к другим экранам и операциям, выполняемым LEFMLink 2G. После появления на экране меню элементы панели задач становятся недоступными до возвращения на главный экран. Ниже приводится краткая информация о работе меню. Каждый элемент задачи будет подробно рассмотрен в следующем разделе.

- Диагностика сигнала
- Диагностика расчета
- Преобразователи
- Путь тестового/отраженного сигнала
- Тенденции
- Проверка состояния

Системные аварийные сигналы
Этот раздел содержит информацию о состоянии устройства. Может отображаться одно из следующих сообщений:

No Setup (отсутствует настройка)
No GSS (отсутствует GSS)
BAD Checksum (неправильная контрольная сумма)
No Communications (отсутствует связь)

No Setup появляется в том случае, если система не была настроена или настройка была удалена.

1 LEFMLink периодически повторно загружает регистры временного хранения, однако если пользователь знает, что блоки были изменены, рекомендуется выполнить повторную загрузку вручную.
No GSS появляется тогда, когда система настроена на использование GSS (сигнал глобальной синхронизации) и никто не присутствует.

BAD Checksum появляется в случае неправильного завершения самодиагностики памяти системы.

No Communications появляется в том случае, если система не может связаться с устройством.

Нижняя строка состояния (информация о конфигурации блока)

В нижней строке состояния отображается информация о состоянии блока, подключенного в данный момент. Она может включать:

На левой стороне панели представлены данные конфигурации из датчика.
- Серийный номер устройства
- Номер технологической позиции
- Тип потока (полный объем, чистый объем, масса)
- Количество каналов
- Тип жидкости

На правой стороне представлена информация о настройках подключения.
- Порт связи
- Скорость передачи
- Идентификатор ведомого устройства
Обзор данных, специфических для продукта

На основном экране для расходомеров серии LEFM 2xx отображается следующая информация:

- Расход — текущий расход в единицах, запрограммированных в датчике
- Счетчик — общий объем с момента последнего сброса, показанный в единицах расхода
- Скорость звука — скорость звука в жидкости
- Температура — входной сигнал измерителя
- Давление — дополнительный входной сигнал давления жидкости (по умолчанию равен нулю, если не установлен)
- Вязкость — рассчитанная вязкость жидкости
- Плотность — рассчитанная плотность жидкости

Журнал сигнализации и оповещений

Этот значок показывает состояние системы. Красный цвет указывает на то, что некоторые характеристики вышли за пределы спецификации. При нажатии на этот значок открывается сводная страница состояния.

Рис. 3-5. Журнал аварийных сигналов LEFMLink 2G
Конфигурации загрузки и выгрузки

Скачать файлы загрузки

Значок «Загрузить файл конфигурации» по команде устройства посылает новую настройку в датчик. Чтобы скачать файл установки на устройство, выберите красную стрелку вниз на главном экране. Эта процедура может изменить настройки, которые влияют на результаты измерений расхода.

На рис. 4-1 показано диалоговое окно для файлов настройки.

Рис. 4-1. Диалоговое окно для файлов настройки перед выбором файла конфигурации

Ввод пароля
Для любой команды, которая изменяет конфигурацию оборудования, необходимо ввести команду «Пароль». Пользователь может выполнять различные команды и функции в зависимости от уровня введенного пароля. Пароль пользователя должен состоять из 4 цифр.

Эти пароли определяются в файле конфигурации, для изменения их значения по умолчанию необходимо ввести пароль уровня администратора.

Значения по умолчанию:

Уровень 1 — Масштабирование аналогового сигнала/Счетчики времени установки и сброса
Уровень 2 — Все записи в устройствах

<table>
<thead>
<tr>
<th>Номер пользователя</th>
<th>Пароль</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1111</td>
</tr>
<tr>
<td>2</td>
<td>2222</td>
</tr>
<tr>
<td>3</td>
<td>3333</td>
</tr>
<tr>
<td>4</td>
<td>4444</td>
</tr>
<tr>
<td>5</td>
<td>5555</td>
</tr>
</tbody>
</table>

Примечание: Пароль пользователей может быть изменен путем отправки файла калибровки. Проверьте значения в файлах калибровки.

Примечание. Если оборудование не было сконфигурировано и показывает сообщение **No Setup**, необходимо использовать основной пароль «16286» для первоначальной загрузки. После этого будет использоваться пароль из файла калибровки.

Отправить файл настройки

Отправка неправильного файла настройки отрицательно повлияет на работу устройства. Установочный файл (*.cal) содержит определенные параметры устройства, которые были заданы на заводе. Перед загрузкой новых параметров настройки проконсультируйтесь с Camengo. Если устройство имеет правильные настройки, выполните выгрузку (см. следующий раздел) и только потом приступайте к изменению текущих настроек.

При выборе пункта Select Setup File («Выбрать файл настройки») открывается диалоговое окно для открытия файла (рис.4-2). Выберите соответствующий файл (*.cal) для подключенного устройства. Нажмите кнопку Open («Открыть»), чтобы передать выбранный файл настройки в устройство.

После загрузки файла настройки показания счетчика будут обнулены. Процесс сброса занимает около 30 секунд, в течение которых главный экран датчика будет пустым в течение короткого периода времени.
Рис. 4-2. Диалоговое окно для передачи файла с настройками
Выгру́зить файл настро́ек из устри́йства

На рис. 4-3 показано диалоговое окно для файлов настройки.

Существует два этапа выгрузки текущей конфигурации устройства (*.cal) в компьютер. Первый шаг заключается в выборе действительного шаблона. Шаблон представляет собой файл установки (*.cal), содержащий отображение параметров конфигурации Modbus (обычно все), относящихся к версии прошивки, управляющей датчиком.

Нажмите на кнопку Choose a Template File («Выбрать файл шаблона») и появится диалоговое окно для открытия шаблона (рис.4-4). Установочный файл, поставляемый вместе с устройством, является наилучшим шаблоном; однако в комплекте LEFMLink 2G дополнительно поставляются шаблоны по умолчанию.
После загрузки шаблона кнопка Select Output File («Выбрать файл для вывода») становится активной3. При нажатии на кнопку Select Output File открывается другое диалоговое окно для открытия файла (рис. 4-5). Введите/наберите новое имя (не следует использовать такое же имя, как у файла, поставляемого компанией Cameron) и нажмите кнопку Open («Открыть»).

Теперь нажмите на кнопку Upload Now («Выгрузить»), которая больше не затемнена серым цветом. Это позволяет выгрузить конфигурационные параметры аппаратного устройства в выбранный выходной файл в формате шаблона выгрузки.

Выгруженный файл может быть повторно отправлен в виде установочного файла4.

3 Эта кнопка заменяет кнопку Choose Template File («Выбрать файл шаблона»), как показано на рис. 4-3.
4 Проверьте пароли, поскольку они не могут быть выгружены из устройства.
Рис. 4-5. Диалоговое окно выбора/наименования файла для выгрузки настройки устройства
Раздел 5

Руководства пользователя

В комплекте с LEFMLink 2G поставляются руководства пользователя, которые находятся в каталогах продукции. Чтобы получить доступ к этим руководствам, нажмите на соответствующие обозначенные «вкладки» в нижней части главного экрана.

Существует три типа руководств.

- Быстрый запуск — руководство по эксплуатации LEFMLink 2G
- Руководство по аппаратным средствам — руководство по эксплуатации модели LEFM
- Руководство пользователя программного обеспечения — руководство Modbus для линейки продуктов LEFM
Рис. 5-2. Пример доступа к руководству пользователя
Выполнение задачи

В следующих разделах дается пояснение по выполнению задач, представленных в выпадающем меню Tasks («Задачи»). К выполняемым задачам относятся следующие операции:

- Регистрация данных — запись данных запуска и остановки; выберите путь к каталогу и название журнала
- Масштабирование аналогового ввода/вывода — Изменение аналогового ввода, аналогового выхода и масштабирование импульсного выхода, а также параметры связи с датчиком.
- Масштабирование RTD аналогового входа
- Установить время датчика
- Сбросить счетчики датчика
- Повторно инициализировать профиль скорости
- Запуск пути

Регистрация данных

Примечание: не следует использовать регистрацию данных из этого расположения, чтобы собрать данные для расходомера газа. См. раздел 8.

Функция регистрации данных в LEFMLink 2G предусматривает два основных варианта — в режиме реального времени и регистрация на основе событий.

Первый вариант позволяет получить один непрерывный файл с данными, собранными в интервале частот регистрации. Каждый день этот файл будет закрываться, а на следующий день будет открыт новый файл.

Для доступа к этой функции выберите Tasks -> Data Logging (Задачи -> Регистрация данных).
Появится диалоговое окно регистрации данных.

Проверьте, что флажок Event Logging? («Регистрация событий») не установлен.

При добавлении данных в существующий файл проверьте установку флажка Append File if Exists? («Дописать файл, если уже существует»).

Если необходимо включить описательные заголовки, проверьте флажок Include Header? («Включать заголовки»).

Нажмите на кнопку Select Log File («Выбрать файл для регистрации») и выберите имя и расположение файла журнала. По умолчанию будет предложено имя файла в зависимости от даты и времени, но при желании его можно изменить.

Нажмите на кнопку Start Logging («Запуск регистрации»), чтобы начать регистрацию данных. В этот момент можно закрыть диалоговое окно регистрации данных и продолжить просмотр данных в LEFMLink. Во время регистрации данных в верхней части экрана появится надпись красными буквами Data Logging («Регистрация данных»).

Для того чтобы остановить регистрацию данных, выберите в меню Tasks -> Stop Logging (Задачи -> Прекращение регистрации) или, если диалоговое окно регистрации данных все еще активно, нажмите на кнопку Stop Logging («Прекращение регистрации») в диалоговом окне.
При втором варианте, Event Logging («Регистрация событий»), создается файл журнала для датчика с определенным количеством событий, например, после возникновения 100 событий. Событие определяется как любое изменение состояния сигнализации/оповещения расходомера. Так, например, если необходимо включить оповещение, а затем удалить аварийный сигнал, то датчик зарегистрирует два события (включение и отключение оповещения). Каждое зарегистрированное событие представляет собой полный набор данных расходомера. Эти зарегистрированные события используются в качестве поддержки при поиске и устранении неисправностей расходомера в условиях перемежающихся сбоев.

Рис. 6-2. Диалоговое окно регистрации событий

Настройка для регистрации событий аналогична стандартной процедуре с двумя важными исключениями.

Сначала установите флажок Event Logging? и выберите количество событий. По умолчанию оставьте его значение равным 100 событиям, если в расходомере сохранено меньше событий, то для тех записей будут сохранены данные в режиме реального времени.

Затем выберите последовательный порт, к которому подключен измеритель LEFMLink.

ПРЕДУПРЕЖДЕНИЕ

При выборе функции регистрации событий расходомер передает исторические события через выбранный последовательный порт. Неправильный выбор последовательного порта может привести к тому, что исторические события вместо компьютера LEFMLink будут переданы на компьютер установки или технологической линии и станут причиной ошибочных показаний в этих системах!

Обновление масштабирования
Меню обновления масштабирования используется для изменения параметров масштабирования входных и выходных сигналов устройства. Для изменения масштабирования необходимо ввести действительный пароль.

Масштабирование аналогового входа

Функция масштабирования аналогового входа используется для настройки аналоговых входов в датчике. Схемы формирования сигнала используются для преобразования входного сигнала тока в напряжение 0–5 В. На данном экране показаны значения в вольтах и технических единицах.

Ниже представлены текущие значения масштабирования, отображенные в диапазоне входного сигнала 0–5 В. Новые максимальное и минимальное значения могут быть введены в соответствующие поля ввода. После ввода новых значений нажмите кнопку Accept («Принять»). После завершения всех изменений значений нажмите кнопку Done («Готово»).

Рис. 6-3. Диалоговое окно масштабирования аналогового входа
ПРЕДУПРЕЖДЕНИЕ
Масштабирование аналоговых входов RTD изменяет параметры расчета измерения расхода устройством. Перед выполнением любой регулировки аналогового входа свяжитесь с соответствующим персоналом на площадке.

Функция масштабирования аналогового входа RTD используется для настройки аналоговых входов RTD в датчике. Схемы формирования сигнала используются для преобразования входного сигнала сопротивления в напряжение 0–5 В. На дисплее отображаются значения RTD в вольтах, омах и температурных показаниях.

Для упрощения масштабирования пользователь может менять смещение и наклон. Предпочтительно использовать эти значения для регулировки. После ввода новых значений нажмите кнопку Accept («Принять»). После завершения всех изменений значений нажмите кнопку Done («Готово»).

Рис. 6-4. Диалоговое окно масштабирования аналогового входа
Функция масштабирования аналоговых выходов используется для настройки аналоговых выходов из датчика. Схемы формирования сигнала используются для преобразования выходного сигнала из напряжения 0–5 В в ток 0–20 мА. Датчик был запрограммирован на заводе для работы с модулями формирования сигнала, специфическими для вашего устройства.

Окно масштабирования аналогового выхода отображает текущее значение выбранного выхода в технических единицах и процентах от полной шкалы. В этом окне отображается значение, масштабированное в технических единицах. Единицы, отображаемые на этом экране, согласуются с данными на главном экране. Новые значения могут быть введены в поля ввода. После ввода новых значений нажмите кнопку Accept («Принять»). После завершения всех изменений значений нажмите кнопку Done («Готово»).

Рис. 6-5. Диалоговое окно масштабирования аналогового выхода

Установка времени датчика

Датчик оснащен часами с батареей и энергонезависимой памятью, которые отслеживают текущее время. Однако когда устройство находится на заводе, его время установлено в соответствии с местным временем на заводе. Поэтому необходимо установить на измерителе соответствующее местное время (если оно не совпадает с заводским), при необходимости обновлять его для корректировки погрешности часов. Экран, используемый для корректировки времени, показан ниже.
Рис. 6-6. Установка времени датчика

Эта задача защищена паролем, однако пользователь любого уровня может изменить время. Программа передает время в ПК, поэтому удостоверьтесь, что в компьютере установлено соответствующее время.

Сброс счетчиков датчика
Датчик имеет энергонезависимую память, которая сохраняет накопленные значения во время отключения электропитания. Тем не менее, если необходимо сбросить счетчики (установить на 0), используется данная задача и следующий экран.
Эта задача защищена паролем, однако пользователь любого уровня может сбросить счетчики.

Повторная инициализация профиля скорости
Датчик оборудован энергонезависимой памятью, которая сохраняет наилучший расчет профилей скорости во время отключения электропитания. Однако если эти оценки необходимо инициализировать повторно (установить значения по умолчанию в файлах конфигурации программного обеспечения), используется данная задача и экран, показанный ниже.
Эта задача защищена паролем, однако пользователь любого уровня может повторно инициализировать профиль скорости.

Запуск пути
Диалоговое окно запуска пути имеет две функции. Во-первых, оно дает пользователю возможность выбрать путь, который используется для контрольных точек на задней стороне платы СТС. При этом пользователю не нужно менять настройки DIP-переключателей, поскольку это может быть затруднительным в том случае, когда установлены щупы осциллографа.

Во-вторых, при использовании более поздних версий прошивки этот экран дает пользователю возможность получить индикацию сигнала, используемого измерителем для всех путей.

Рис. 6-8. Повторная инициализация значений профиля скорости
Сначала введите пароль администратора (1234 по умолчанию).
Выберите требуемый путь из матрицы. Если будет использоваться наклон, выберите вариант между Path Up («Путь вверх») и Down («Вниз») и Echo Path Up («Путь отраженного сигнала вверх») и Down («Вниз»). Для сигнала, показанного на экране, отображаются только акустические пути, функции смещения вверх и вниз могут отображаться одновременно.
Нажмите Execute («Выполнить») для отправки выбранного пути в измеритель.

Рис. 6-9. Диалоговое окно запуска пути при начальном пуске

В этот момент органы управления для отображения сигнала включены. Нажмите Display Up («Дисплей вверху») и Display Down («Дисплей внизу»), чтобы показать форму сигнала на экране. Нажмите Show Up Values («Показать значения вверху») и Show Dn Values («Показать значения внизу»), чтобы отобразить на экране табличные значения. Для сохранения таблицы нажмите на соответствующую кнопку Save Table to File («Сохранить таблицу в файл»).
Рис. 6-11. Просмотр формы сигнала пути запуска

Как только желаемая форма сигнала появится на экране, обновление можно остановить, нажав на кнопку Freeze («Закрепить»). Появляется кнопка Show Report («Показать отчет»). Нажав на нее, можно получить отчет о текущей форме сигнала. Ее можно распечатать или сохранить на диск.

Нажмите кнопку Continue («Продолжить»), чтобы собрать больше данных.

Для изменения выбранного пути выберите требуемый путь и снова нажмите кнопку Execute.

Чтобы выйти из экрана, нажмите кнопку Freeze, а затем кнопку Exit («Выход»). На экранах с ограниченным разрешением может потребоваться прокрутка вниз, чтобы увидеть кнопку выхода.
Рис. 6-12. Отчет для формы сигнала
Пункты меню

Каждая из кнопок меню запускает определенный экран, как описано ниже.

Диагностика сигнала

На рис. 7-1 показан экран диагностики сигнала. Данные на этом экране сгруппированы по различным путям. Датчик поддерживает одновременно до 8 путей. Каждый путь представляет данные акустического измерения, предоставляемые измерителем. LEFM240C содержит 4 пути, а LEFM220C — 2.
Информация заголовка
Ниже представлено описание пунктов на этом экране:
- Updates («Обновления») — общее количество запросов данных, выполненных LEFMLink 2G, которые были приняты датчиком. Это значение, как правило, увеличивается на единицу (1) через каждые пять (5) секунд
- Samples/Info («Образцы/информация») — количество разверток акустических измерений в течение последнего периода обновления.
- Setup ID («Идентификатор настройки») — идентификатор конфигурации устройства
- FW — Firmware Version («Номер редакции прошивки»).
- Контрольная сумма конфигурации датчика
- Time/Date — Время/дата часов реального времени датчика
- Last Mod By («Автор последней модификации») — индекс пользователя (от 1 до 5, 6 — администратор)
- Mods («Моды») — количество изменений конфигурации (с момента установки программного обеспечения)

Информация о пути
- TDown — акустический каротаж (наносекунды) для каждого пути.
- DeltaT — разница между предшествующим и следующим временем перехода (наносекунды) для каждого пути
- Status (Status) — Path Status (статус пути); Normal (нормальный), Reject (отклонение), VOS (Sound Velocity Error — ошибка скорости звука) для каждого маршрута
- Gain Up & Dn — усиление захвата импульсов в дБ, обычно между 40 и 88 дБ
- SNR — отношение сигнал/шум; отношение амплитуда акустического сигнала к флуктуационному шуму
- Standard Deviation (стандартное отклонение) — мера устойчивости сигнала; вычисляет нормированную дисперсию dельта T (выраженную в % — максимальное значение 100 %, в частности, для нулевого расхода, когда стандартное отклонение больше, чем значение измерения)
- Reject (отклонение) — процент отклоненных данных; как правило, менее 5 %

Данные по качеству информации (только для справки)
- No Signal (нет сигнала) — акустический сигнал не получен
- Tup Deviations (отклонения Tup) — время прохождения сигнала в восходящем направлении, не согласуемое со статистическим средним при более чем приемлемых пределах
- Tdown Deviations (отклонения Tdown) — время прохождения сигнала в нисходящем направлении, не согласуемое со статистическим средним при более чем приемлемых пределах
- DeltaT Deviations (отклонения DeltaT) — различия во времени перехода (между восходящим/нисходящим направлением), не согласуемые со статистическим средним при более чем приемлемых пределах
- Waveform Failure (несоответствующая форма сигнала) — поступивший сигнал не прошел тест на кроссовую корреляцию
- SNR Up/Down — форма волны не превышала шум с достаточным запасом
- DeltaT invalid (недействительные DeltaT) — измерения не соответствуют диапазонам устройств
Диагностика расчета

Информация заголовка

Информация о пути

Информация об измерителе

Рис. 7-2. Диагностика расчета

Страница диагностики расчетов отображает профиль скорости, фактор профиля, число Рейнольдса, информацию счетчиков и информацию о настройке. Описания различных разделов:

Примечание. Информация заголовка в этом разделе не повторяется.

Информация о пути

- Velocity (скорость) — продольная скорость жидкости, рассчитанная по каждому пути
- VNorm — скорость каждого пути, нормированная к среднему значению измерителя
- Sound Velocity (скорость звука) — скорость звука, рассчитанная для пути

Информация об измерителе

- Показания счетчика
 - сбрасываемые
 - несбрасываемые (нефиксированные)
 - только положительные
 - только отрицательные
- Meter Factor (фактор измерителя) — поправочный коэффициент профиля скорости, используемый измерителем
- Reynolds Number — рассчитанное число Рейнольдса.
- FR — соотношение линейности (отношение скорости внешнего пути к скорости внутреннего пути — только для моделей 240 и 280)
- Swirl — вихревое отношение, нормированное для осевой скорости
Рис. 7-3. Экран датчиков

Страница диагностики датчиков показывает проверку сопротивления датчиков/кабелей и результаты испытаний электронного генератора. Описания различных разделов:

Информация о сопротивлении (пути перечислены вверх/вниз)
- Positive to Shield (положительное по отношению к экранированию) — нормальное ~ 200 кОм
- Negative to Shield (отрицательное по отношению к экранированию) — нормальное ~ 200 кОм

Сравнения генератора
- Отображены значения от генераторов на 5 и 100 МГц. Если они различаются более чем на 0,01 %, то датчик выдает аварийный сигнал и выходной сигнал на LEFMLink 2G.
Путь отраженного сигнала

Рис. 7-4. Экран пути отраженного сигнала

Каждый преобразователь испытан в режиме отраженного сигнала. Эта информация используется для диагностики производительности преобразователя и акустического затухания. Описания различных разделов:

Примечание. Информация заголовка в этом разделе не повторяется.

Информация об отраженном сигнале

- EPTD — T Down отраженного импульса, время, в течение которого ультразвуковой импульс возвращается к передающему преобразователю.
- EPDT — Delta T отраженного сигнала, разница во времени между двумя отраженными импульсами.
- Gain Up & Dn — Усиление отраженных импульсов в дБ, между 40 и 88 дБ.
Тенденции

Рис. 7-5. Графики тенденций

Графики расхода на каждый путь, скорости звука, отклонения Delta T и профиля скорости приведены на рис. 7-5. Эти графики можно использовать для диагностики проблем с гидравличкой жидкости в трубопроводе.
Проверка состояния

Проверка состояния представляет собой одну сводную страницу. Здесь показано состояние измерителя, в том числе усиление, отношение сигнал/шум, профиль скорости, статистические и гидравлические параметры в графическом формате.

На каждом графике пути, выходящие за пределы спецификации (или превышающие границу, или не выдерживающие сравнения с контрольной точкой), показаны красным цветом. Кроме того, рядом с реальными данными можно построить данные сравнения (например, с калибровкой измерительного прибора или с данными для другой даты). Чтобы сделать сравнение, загрузите соответствующий файл в формате *.csv с помощью файлового менеджера, эта операция доступна по кнопке Open Compare File («Открыть файл для сравнения») на этой странице. Если файл для сравнения не выбран, то будут показаны только реальные данные. Кнопка Preview Report («Просмотр отчета») дает пользователю возможность сохранить эти данные и распечатать отчет.

Рис. 7-6. Сводная информация по проверке состояния
(Примечание. Необходима прокрутка экрана)
Раздел 8

Вкладка газа

В этом разделе описываются подробные диагностические/акустические данные, специфичные для ультразвукового газового расходомера LEFM 380Ci. На следующих страницах описаны данные, доступные с помощью программного обеспечения LEFMLink 2G, и показанные на вкладке газа. После подключения к измерителю с помощью LEFMLink 2G (настройка программного обеспечения и процесс подключения описаны в разделах 2 и 3) передняя страница должна выглядеть, как показано на рисунке ниже. Если на первой странице не видно вкладки Gas Tab, выполните действия, описанные в следующем разделе «Настройка вкладки газа».

Настройка вкладки газа

Для активации вкладки газа пользователь должен перейти к файлу ModWorXPro.ini и обновить его/убедиться в том, что выбран правильный файл HTML. ModWorXPro.ini должен находиться в каталоге C:\LEFMLink2G\Data\ModWorXPro\build files. В файле ModWorXPro.ini есть три строки, которые позволяют выбрать другой HTML файл для кода 200MU, 639 или кода газового расходомера:

Апостроф в начале двух других строк означает, что они относятся к комментариям. Комментарий должен отсутствовать только в одной из этих трех строк. При использовании для газа необходимо сделать, например:

"MainScreenHTML=LEFMLinkDeviceMainDisplay200MU.htm"
Обсуждение функций

Датчик выполняет все функции управления и регулирования времени для генерации и измерения акустических импульсов. Акустическая обработка выполняется с помощью специализированных фирменных плат, которые предназначены для получения высоких частот дискретизации, обеспечения стабильных ультразвуковых сигналов и устранения смещения нуля. Печатные платы в датчике запрограммированы для выполнения следующих функций:

- Пошаговое выполнение циклов ультразвукового пути
- Обеспечение регулировки усиления для каждого ультразвукового пути
- Вычисление расхода
- Генерация импульсных и аналоговых выходных сигналов

На следующих страницах представлено пояснение и описание того, как LEFMLink 2G представляет пользователю данные, собранные и рассчитанные датчиком, для поиска неисправностей и диагностики измерителя.

Пункты меню

На следующем изображении экрана показана вкладка 380Ci для газа.

Рис. 8-2. Вкладка диагностики газа с переходом с первой страницы
Рис. 8-3. Заголовок диагностики газа

Информация заголовка

- Updates (обновления) — общее количество запросов данных, сделанных LEFMLink 2G, которые были приняты датчиком. Это значение, как правило, увеличивается на единицу (1) через каждые пять (5) секунд
- Samples/Info (образцы/информация) — количество разверток акустических измерений в течение последнего периода обновления
- Setup ID (идентификатор настройки) — идентификатор конфигурации устройства
- Firmware Version (версия прошивки) — идентификация прошивки и номер редакции
- Контрольная сумма конфигурации датчика
- Time/Date — время/дата часов реального времени датчика
- Last Mod By (автор последней модификации) — индекс пользователя (от 1 до 5, 6 — администратор)
- Mods (моды) — Количество изменений конфигурации (с момента установки программного обеспечения)

Рис. 8-4. Информация о пути газа в LEFMLink

Информация о пути

- TUp — Время акустического перехода (наносекунды) для каждого пути, заканчивающегося на расположенном выше преобразователе
- TDown — время акустического перехода (наносекунды) для каждого пути, заканчивающегося на расположенном ниже преобразователе
- DeltaT — разница между предшествующим и последующим временем перехода (наносекунды) для каждого пути
- Std dev — мера устойчивости сигнала; вычисляет стандартное отклонение дельта T (наносекунды)
- SOS — рассчитанная скорость звука в жидкости
- Velocity (скорость) — скорость жидкости, рассчитанная по каждому пути
- VNorm — скорость каждого пути, нормированная к среднему значению измерителя
- Status (статус) — Path Status (статус пути); Normal (нормальный), Reject (отклонение), VOS (Sound Velocity Error — ошибка скорости звука) для каждого маршрута
- % Good (процент годных) — процент принятых данных, как правило, более 95 %
- Gain Up & Dn — усиление захвата импульсов в дБ, обычно менее 70 дБ
- SNR — отношение сигнал-шум; отношение амплитуды акустического сигнала к флуктуационному шуму
- SigAmpThrUp — отношение первого положительного пика сигнала для максимального сигнала в восходящем направлении
- SigAmpThrDn — отношение первого положительного пика сигнала для максимального сигнала в нисходящем направлении
- Turb% — вычисляет стандартное отклонение дельта T, нормированное по дельта T и выраженное в процентах.

Рис. 8-5. Информация об измерителе LEFMLink 2G

Информация об измерителе

- Flatness Ratio (соотношение линейности) — соотношение скорости внешнего пути к скорости внутреннего пути.
- Swirl — вихревое отношение, нормированное для осевой скорости.
- System Alarm (системные аварийные сигналы) — осуществляет общий контроль состояния системы.
- Volume Rate (объемный расход) — текущий объемный расход измерителя.
- Meter Factor (коэффициент прибора) — рассчитанный коэффициент прибора, используемый для коррекции измерений расхода
- Temperature — текущая температура корпуса измерителя
- Pressure — текущее давление измерителя (если используется)
- SOS — рассчитанная измерителем средняя скорость звука в жидкости
- Velocity — рассчитанная измерителем средняя скорость жидкости
Перекрестный контроль VOS

Перекрестный контроль VOS рассчитывается по следующей формуле:

\[
VOS\text{ Cross Check} = \frac{\text{Inside Diameter} \times (VOS\text{ long path} - VOS\text{ short path})}{\text{Period of Signal} \times VOS\text{ long path} \times VOS\text{ short path}}
\]

Результаты перекрестного контроля VOS показаны в LEFMLink 2G в виде числовых показателей, а также цветом (зеленый = годен, желтый = предупреждение, красные = неисправность). Критерии годен/брак определяются пользователем с помощью интерфейса программного обеспечения LEFMLink 2G.

Информация о настройке измерителя

- **Inside Diameter** — внутренний диаметр расходомера
- **Period of Signal** — период сигнала, как правило, 5 мкс для преобразователей 200 кГц
- **Alert Threshold** (пороговое значение для оповещения) — определяемое пользователем значение перекрестного контроля VOS в отношении периодов сигнала
- **Fail Threshold** (пороговое значение для неисправности) — определяемое пользователем значение перекрестного контроля VOS в отношении периодов сигнала

Регистрация данных

Функция регистрации данных доступна на вкладке газа, принцип действия этой функции аналогичен описанному в разделе 6 настоящего руководства. Инструкции по регистрации данных см. в разделе 6.
Инструменты

Каждый из инструментов использует один из экранов, описанных в следующих разделах. Эти инструменты включают:

- **Viewing Modbus Registers (просмотрregistров Modbus)** — инструмент для просмотра и записи в любой регистр Modbus
- **Output forcing (форсирование выхода)** — значения усиляния для аналогового и частотного выхода в целях калибровки контура
- **Zeroing Meter (нулевое положение измерителя)** (необходимо использовать специальные процедуры на сайте)

Примечание. Регистры временного хранения защищены паролем, как описано в разделе 3.
Форсирование выхода

Во время установки, масштабирования устройства и устранения неисправностей очень полезно установить на аналоговых выходах (ток или импульс) произвольное значение — независимо от истинного значения. Этот инструмент использует следующий экран.

Рис. 9-2. Форсирование выхода
Октябрь 2014 г.

Обнуление измерителя

Во время установки, периодической калибровки и диагностики прибор может быть обнулен. Такие действия следует выполнять с исключительным вниманием. Если поток через расходомер не является истинно нулевым, это может свидетельствовать о возникновении смещения в устройстве.

Для отключения потока через измеритель, проверки нулевого потока и работоспособности измерителя необходимо использовать процедуры, применимые на площадке.

Рис. 9-3. Обнуление измерителя
Связь

Пользователь может явно изменить только адрес ведомого устройства и скорость передачи данных в устройстве.

![Set Device Comms](image)

Рис. 9-4. Настройка связи устройства
После изменения параметров связи на устройстве пользователь может соответственно изменить параметры связи в LEFMLink.

Рис. 9-5. Выбор параметров COM LEFMLink
ГАРАНТИИ — ОГРАНИЧЕНИЕ ОТВЕТСТВЕННОСТИ. Продавец гарантирует только право на владение продукцией, программным обеспечением, оборудованием и материалами, а также то, что, все вышеперечисленные продукты, исключая программное обеспечение, не будут иметь дефектов с точки зрения качества материала и изготовления в течение 1 (одного) года с момента поставки. Продавец не дает гарантию, что программное обеспечение не имеет ошибок или что оно будет работать в непрерывном режиме. Продавец предоставляет все программное обеспечение «как есть». НЕ СУЩЕСТВУЕТ НИКАКИХ ГАРАНТИЙ, ЯВНЫХ ИЛИ ПОДРАЗУМЕВАЕМЫХ, ТОВАРНОГО СОСТОЯНИЯ, ПРИГОДНОСТИ ИЛИ ИНЫХ, КОТОРЫЕ ВЫХОДЯТ ЗА ПРЕДЕЛЫ УСЛОВИЙ, ЗАЯВЛЕННЫХ НЕПОСРЕДСТВЕННО В ПРЕДЫДУЩЕМ ПРЕДЛОЖЕНИИ. Ответственность продавца и исключительное правовое средство Покупателя в случае любого иска (по контракту, в результате правонарушения, нарушения условий гарантии или по иной причине), возникающие из факта продажи или использования любых продуктов, программного обеспечения, оборудования и материалов, явно ограничиваются заменой такой продукции, программного обеспечения, расходных материалов, или возвращением материалов продавцу или, по выбору Продавца, предоставлением клиенту кредита на стоимость таких продуктов. Продавец ни в коем случае не несет ответственности за специальные, непредвиденные, косвенные, штрафные или случайные убытки. Продавец не дает никакой гарантии на продукцию, программное обеспечение, принадлежности и материалы, которые не были изготовлены Продавцом: такие продукты будут продаваться только с гарантиями, выданными их изготовителями. Продавец будет передавать покупателю такой продукции гарантии, предоставляемые ему производителем.
Caldon® Ultrasonics

Обслуживание клиентов и техническая поддержка

1000 McLaren Woods Drive
Coraopolis, PA 15108 USA
Toll 724-273-9300

The ultrasonic measurement group of Cameron

www.caldon.net

СИСТЕМЫ ИЗМЕРЕНИЯ

Paine: NuFlo Measurement Systems • Barton Instrument Systems • Caldon, Inc.

СЕВЕРНАЯ АМЕРИКА

1.800.654.3760
ms-us@c-a-m.com

АЗИАТСКО-ТИХООКЕАН

603.2287.1039
ms-asia@c-a-m.com

ЕВРОПА, БЛИЖНИЙ ВОСТОК И АФРИКА

44.1243.826741
ms-uk@c-a-m.com

ШТАТ-КВАРТИРА В ХЬЮСТОНЕ: 281.582.9500 • www.c-a-m.com/flo

США: Хьюстон, Техас • Корну-Крэст, Техас • Кливленд, Огайо • Остин, Техас • Даллас • Таллас Дьюн, ОК • Денвер, CO • Бейкерсфилд • Шеридан, WY • Флитборо, Пенсильвания • Лейкер, Пенсильвания • Данибург, Центральный Вирджиния • Вирджиния • Вауноминг • Вирджиния • Вирджиния • Вирджиния

КАНАДА: Калгари, AB • Эдмонтон, AB

МЕЖДУНАРОДНЫЕ: Абердин, Шотландия • Пекин, Китай • Богнор-Редис, Великобритания • Дубай, ОАЭ • Хаси Моуса, Алжир • Куала-Лумпур, Малайзия • Сингапур